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ABSTRACT
The advent of multicore and manycore processors in clusters
advocates for combining MPI with a shared memory model
like OpenMP in high-performance parallel applications. But
exploiting hardware resources with such models can be sub
optimal. Thus, one approach is to use the hybrid context
to perform MPI communications. In this paper, we address
this issue with a concept of hybrid collective communica-
tions, which consists in using OpenMP threads to parallelize
MPI collectives. We validate our approach on several MPI
libraries (IntelMPI and MPC), improving the overall time
up to a factor of 5.29×, in a real world application.
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1. INTRODUCTION
Multicore processors are nowadays the building blocks of

current supercomputers. The main trend is to increase the
number of available resources within a computational node:
cores and memory. But, even though the main memory be-
comes larger, the amount of memory per core is decreasing.
This evolution may have a negative impact on the MPI based
applications that exploit those clusters. For a better use of
memory, one possible solution is to mix the MPI program-
ming model with a thread-based shared-memory approach
like OpenMP. However, there are multiple directions to in-
clude a thread-based model within an existing MPI program.
The master approach [3] progressively augments the appli-
cation with loop-level OpenMP directives. Within those
regions, all available cores are exploited, but outside the
OpenMP parts, only a subset of cores are used. We propose
a solution to this lack of parallelism by focusing on MPI
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collectives. Indeed, such constructs are widely encountered
in MPI applications and represent a non negligible percent-
age of total execution time. For example, the time spent in
MPI Allreduce construct may account for more than 50%
of global execution time [2]. Several papers investigate the
problem of idle resources in a hybrid context, and optimiza-
tions of reduction collective. [5] targets the problem of idle
OpenMP threads in hybrid MPI + OpenMP applications,
identifies these idle threads, and exploits them by several
ways. In [4], authors present two variants to parallelize the
computational part in MPI Allreduce through shared mem-
ory. Each process divides its own block of elements into
several sub blocks and reduction is performed. But the sec-
ond flavor optimizes the memory traffic by shifting the work
on each process on a cyclical way. Our contribution adapts
the approach of [4] to optimize hybrid programs performing
MPI collective communications outside OpenMP regions,
and thus automatically exploit the idle cores.

2. USING OPENMP IN MPI ALLREDUCE
Our approach consists in splitting the vectors of an MPI

Allreduce operation in multiple chunks such as each avail-
able core will be in charge to reduce one chunk. Thus, each
OpenMP thread would process a subset of the input vector
by performing a smaller MPI reduction, leading to the par-
allelization of the computational and communication parts
of the whole operation with independent operations.

Figure 1 depicts an example with an application running
on a computational node containing four 4-core processors
for a total of 16 cores. Let us consider now a parallel MPI
+ OpenMP application running with 4 MPI processes. The
regular approach to place the MPI processes would be one
per multicore processor, letting 4 cores per MPI rank to
launch an OpenMP parallel region. The top part of Figure 1
illustrates the behavior of the application when performing
an MPI Allreduce communication outside any OpenMP re-
gion. Because this operation is not done inside a parallel
block, only 4 cores will help processing this operation. It
leads to a total of 12 idle cores. Our solution is described on
the bottom part of this figure: it shows how the spare cores
are used when performing an hybrid MPI Allreduce opera-
tion. We can see that for each MPI rank, 4 OpenMP threads
are launched, each working on its subset of the initial vector,
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Figure 1: Hybrid MPI Allreduce

and thus all cores of the node are active.

3. EXPERIMENTAL RESULTS
We implemented our concept in a wrapper, which captures

calls to MPI Allreduce collectives using the MPI Profiling
Interface (PMPI). Our approach works with MPI runtimes
supporting MPI_THREAD_MULTIPLE level and all OpenMP im-
plementations. Moreover our design guarantees a full sup-
port of regular types, derived data types, and communica-
tors passed to the MPI Allreduce collective.

We evaluated our concept on 4 nodes of Curie supercom-
puter, containing 16 8-core CPU Nehalem-EX@2.27GHZ.
Experiments were performed on a real-world MPI+OpenMP
application (MC [2]) simulating particle interactions using
Monte Carlo methods. It performs an MPI Allreduce col-
lective to update the number of available particles at each
time step. We tested our hybrid approach on this 128KB
operation with IntelMPI 4.1.3.048, MPC 2.4.1 [1] and Bul-
lxMPI 1.1.16.6. We fully populated the nodes with OpenMP
threads, and tuned the number of threads for the hybrid
MPI Allreduce collective.

Figure 2 depicts comparative execution time of the MC
application, on four 128-core nodes, with 1 MPI task per
node. With MPC, best hybridization of MPI Allreduce is
obtained with 8 threads, giving 3.14× speedup. For In-
telMPI, the best combination is obtained with 9 threads,
leading to a speedup of 3.54×. At this point, we perform
numthreads similar calls to MPI Allreduce, numthreads be-
ing the number of used OpenMP threads. Since each thread
has a copy of the same input communicator, they will all
perform their own reduction following the same communi-
cation pattern. This scheme is likely to generate memory
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Figure 2: MC - Comparison between MPC, In-
telMPI, BullxMPI, and best hybrid combination for
MPC and IntelMPI (4 128-core nodes, 1 task per
node)

contention. So we propose a variant of our approach: we
give a different role to each thread, by shifting their rank in
sub-communicators. It leads to an additional improvement
of 68% with MPC (MPC8thRS on Figure 2), with a total
speedup of 5.29×.

4. CONCLUSION AND FUTURE WORK
In this paper, we proposed a way to optimize MPI+OpenMP

applications by parallelizing the collective operations using
spare cores. Our approach is portable to any MPI im-
plementation with MPI_THREAD_MULTIPLE support and any
OpenMP runtime. Experimental results showed a speedup
of 5.29× on a real world application. For future work, we
plan to extend this work with heuristics to predict the best
hybrid combination based on criteria such as vector length
and hardware topology. Rank shifting should be improved,
dealing with network topology and NUMA effects. Finally,
this method can be applied and tuned to more scientific ap-
plications and clusters based on manycore processors such
as Intel Xeon Phi.
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