
Computing (2014) 96:263–278
DOI 10.1007/s00607-013-0327-z

Improving MPI communication overlap
with collaborative polling

Sylvain Didelot · Patrick Carribault ·
Marc Pérache · William Jalby

Received: 14 December 2012 / Accepted: 26 April 2013 / Published online: 9 May 2013
© Springer-Verlag Wien 2013

Abstract With the rise of parallel applications complexity, the needs in term of com-
putational power are continually growing. Recent trends in High-Performance Com-
puting (HPC) have shown that improvements in single-core performance will not be
sufficient to face the challenges of an exascale machine: we expect an enormous growth
of the number of cores as well as a multiplication of the data volume exchanged across
compute nodes. To scale applications up to Exascale, the communication layer has to
minimize the time while waiting for network messages. This paper presents a message
progression based on Collaborative Polling which allows an efficient auto-adaptive
overlapping of communication phases by performing computing. This approach is
new as it increases the application overlap potential without introducing overheads of
a threaded message progression. We designed our approch for Infiniband into a thread-
based MPI runtime called MPC. We evaluate the gain from Collaborative Polling on
the NAS Parallel Benchmarks and three scientific applications, where we show sig-
nificant improvements in communication times up to a factor of 2.

S. Didelot (B) · P. Carribault · M. Pérache · W. Jalby
Exascale Computing Research Center, Versailles, France
e-mail: sylvain.didelot@exascale-computing.eu

W. Jalby
e-mail: william.jalby@exascale-computing.eu

S. Didelot · P. Carribault · M. Pérache · W. Jalby
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, France

P. Carribault · M. Pérache
CEA, DAM, DIF F-91297 Arpajon, France
e-mail: patrick.carribault@cea.fr

M. Pérache
e-mail: marc.perache@cea.fr

123

264 S. Didelot et al.

Keywords HPC · Overlap · MPI · High-speed network · Polling

Mathematics Subject Classification 68N19 · 68N15

1 Introduction

The scalability of a parallel application is mainly driven by the amount of time in the
communication library. One solution to decrease the communication cost is to hide
communication latencies by performing computation during communications. From
the application developer’s point of view, parallel programming models offer the ability
to express this mechanism through non-blocking communication primitives. One of
the most popular communication libraries, Message Passing Interface (MPI), allows
the programmer to use non-blocking send and receive primitives (i.e., MPI_Isend
and MPI_Irecv) to enable overlapping of communication with computation. For
example, Fig. 1a exposes one MPI task performing a non-blocking communication
without overlapping capabilities. In such a situation, the message is actually received
from the network during the MPI_Wait call. On the other hand, the same example
with overlapping shows a significant improvement reducing the overall time consumed
(see Fig. 1b).

Achieving overlap usually requires a lot of code restructuring and transformations.
Users are often disappointed after spending a lot of time to enforce overlap because the
runtime does not provide an efficient support for asynchronous progress [1,2]. The MPI
standard does not define a clear implementation rule for asynchronous communications
but only gives recommendations. Most of the current MPI libraries do not support
true asynchronous progression and performs message progression within MPI calls
(i.e., inside MPI_Wait or MPI_Test functions). The main difficulty with these
implementations occurs when an MPI task performs a time consuming function with
no call to MPI routines for progressing messages (i.e., calls to BLAS).

In this paper, we propose a collaborative polling approach for improving the com-
munication overlap without disturbing compute phases. This runtime optimization has
been implemented inside a thread-based MPI runtime called MPC (Multi-processor
computing [3]). Collaborative polling allows message progression when a task is
blocked waiting for a message, enabling overlapping with any other task within the
same compute node. This method expresses a significant message-waiting reduction
on scientific codes. In this paper, we focus on the MPI standard and Infiniband network
but the collaborative polling could be adapted to any network interconnect and could
be extended to other distributed-memory programming models.

a b

Fig. 1 Influence of communication/computation overlapping in MPI, a no overlapping, b overlapping

123

Improving MPI communication overlap with collaborative polling 265

2 Related work

2.1 Message progression strategies

Previous work has shown significant speedups using overlap of communication on
large scale scientific applications [4,5]. For common MPI runtimes, message progres-
sion is accomplished when the main thread calls a function from the MPI library. To
achieve overlap at user level, MPI applications may be instrumented with repeated
calls to the MPI_Test function to test all outstanding requests for completion. This
solution is not convenient for the developer and irrelevant for not MPI-aware func-
tions. For implementations supporting the MPI_THREAD_MULTIPLE level of thread
safety, Thakur et al. [6] present an alternative overlapping technique where an addi-
tional user-thread is created and blocked inside a MPI_Recv function. Hager et al. [7]
investigate an hybrid MPI/OpenMP implementation with explicit overlap optimiza-
tions. However, both techniques rely on source-code modifications and involve mul-
tiple programming models.

Recent Host Channel Adapters (HCAs) provide hardware support for total or partial
independent progress but rely on specific network hardware capabilities [8]. To enable
software overlapping without user source code modifications, FG-MPI[9] extends the
MPICH2 runtime and allows over-subscribed and non-preemptive MPI threads to
share the same MPICH2 process. The proposed solution however limits the message
progression strategy to a physical core whereas collaborative polling enables it at the
compute node level. MPI libraries also investigate a threaded message progression.
Additional threads (also known as progression threads) are created to retrieve and
complete outstanding messages even if large computation loops prevent the main
thread to call the runtime library. For accessing the network hardware, progression
threads may be set to use the polling or the interrupted-driven methods.

The polling approach increases performance on a spare-core thread subscription
where the progression thread is bound on a dedicated core. It was for example adopted
by IBM in the Bluegene systems [10]. Because only a part of the cores participates
to computation, the spare-core mode is barely used on regular HPC clusters. MPI is
often used in a fully subscribed mode where the same core is shared between the
progression thread and the user thread. However the decision when and how often the
polling function should be called is non-trivial. Too many calls may cause an overhead
and not enough calls may waste the overlap potential.

The interrupted-driven message detection is different from the polling approach
since it allows the sender or the receiver to have an immediate notification of completed
messages [11]. If no work has to be done, the progression thread enters into the wait
queue and goes to sleep. When a specific event is generated from the network card
(i.e., an incoming message), an interruption is emitted and the progression thread
goes back to the run queue. Because generating an interruption for each message
may be costly, MPI runtimes often implement a selective interrupt-based solution
[12,13]. Only messages which are critical for overlapping performance may generate
an interruption.

For the fairness of the CPU resource sharing, each process has a maximum time to
run on a CPU: the time-slice. For example on a Linux kernel, it varies from 1 to 10

123

266 S. Didelot et al.

Fig. 2 Overheads in a threaded message progression

ms. Once the time-slice is elapsed, the scheduler interrupts the current running thread,
places it at the end of the run queue for its static priority and schedules a new runnable
thread.

When an interruption occurs, the progression thread has to be immediately sched-
uled, raising two main concerns. First, it is unclear how much time is required to
switch from the active thread to the progression thread: the scheduler may wait for the
running thread to finish its time-slice and it is uncertain that the progression thread
is the next to be scheduled. Second, one time-slice may be insufficient to poll, match
and, if needed, recopy the network message to the end-user buffer. These overheads
are sequentially denoted as “Startup Time” and “Reception Time” on Fig. 2. One solu-
tion to increase the reactivity would be to use real-time threads. However, this might
increase the context switching overheads since the progression thread is scheduled
every time an interrupt occurs [14].

This work extends a previous study published by Didelot et al. [15]. In the following
paper, we investigate deeper the gain of collaborative polling while experimenting it
on more applications. The approach most closely related to ours is described in the I/O
Manager PIOMan [16] where the preemptive scheduler is able to run tasks in order
to make the communication library progress. This previous work is able to efficiently
overlap messages in a multi-threaded context but does not allow a MPI rank to steal
tasks from another MPI rank.

2.2 Thread-Based MPI

In a thread-based MPI library, each MPI rank is a thread. All threads (MPI ranks)
share the same memory address space within a unique UNIX process on a compute
node. AMPI [17], AzequiaMPI [18], FG-MPI[9], MPC [3], TOMPI [19], TMPI [20],
USFMPI are some thread-based MPI implementations.

Because of the implicit shared-memory context among tasks, thread-based runtimes
are well suited for implementing global policies, such as message progression, within
a compute node. We implemented our contribution in the MPC framework, a hybrid
parallelism framework exposing a thread-based MPI 1.3 runtime. The supported pro-
gramming languages are C, C++ and Fortan. According to our needs, MPC brings
three following features:

– A customizable two-level thread scheduler. It helps for tuning the message pro-
gression strategies.

123

Improving MPI communication overlap with collaborative polling 267

– A support for a high-speed and scalable network. It provides an access to Infiniband
networks using the OF Verbs library with an OS-bypass technology.

– An automatic privatization of user’s global variables to thread-private variables
using a patched version of GCC [21].

3 Our contribution: collaborative polling

During the execution of a parallel MPI application, the time spent while waiting for
messages or collective communications is wasted. This idle time is often responsible
for the poor scalability of the application on a large number of cores. Even on a well-
balanced application at user level, some imbalance between tasks may appear from
several factors such as:

– The distance between communicating MPI peers: inter/intra-node communica-
tions, number of network hops.

– The number of neighbors.
– Micro-imbalance of communication (network links contentions, topology).
– Micro-imbalance of computation (non-deterministic events such as preemp-

tion) [5].

The main idea of the collaborative polling is to take advantage of idle cycles due to
imbalance for progressing messages at the compute node level. During its unused
waiting cycles, an MPI task is able to collaborate on the message progression of any
other MPI task located on the same compute node. Figure 3 compares the processing of
messages arriving from a Network Interface Controller (NIC) with a regular message
progression and with the collaborative polling method.

Figure 3 depicts an MPI application performing the following algorithm: each MPI
task executes a non MPI-aware function (Compute) with an unbalanced workload
between tasks before waiting for a message and calling a synchronization barrier.
On the left part, a regular message progression is presented. On the right part, the

Fig. 3 MPI runtime without collaborative polling (left) and MPI with collaborative polling (right)

123

268 S. Didelot et al.

collaborative polling method is used. Collaborative polling allows task 1 to benefit
from the unused cycles while waiting its message: it can poll, receive and match
messages for task 0 which is blocked into a non-interruptible computation loop. Once
the computation loop is done on task 0, the expected message has already been retrieved
by task 1 and the MPI_Wait primitive immediately returns.

As described in Sect. 2.1 most message progression methods require to suspend
the computing phase (with an interruption, an explicit call to MPI or a context switch
to the progression thread) to perform progression. Collaborative polling does not
require these interruptions as it only uses idle time to perform progression. Thus, the
impact of collaborative polling on compute time is reduced compared to other meth-
ods. Collaborative polling also provides an auto-adaptive polling frequency. Indeed,
the frequency of calls to the polling function is correlated with the amount of tasks
waiting for a communication. For example, when the number of tasks waiting on a
barrier increases, the frequency of calls to the message progression method increases
as well.

4 Implementation

We designed and implemented our collaborative polling approach into MPC. Since
the Infiniband implementation of MPC uses the Reliable Connection (RC) service,
the message order is guaranteed and messages are reliably delivered to the receiver.
Three message transfer protocols are available: eager, buffered eager (split a message
into several eager messages) and Rendezvous based on RDMA write. To guarantee
the order across these three protocols, the high level reordering interface of MPC is in
charge of sorting incoming messages.

Modern interconnects such as Infiniband usually exploit Event Queues. When a
message is completed by the NIC, a new completion descriptor is posted to the corre-
sponding completion queue (CQ). Then, the CQ is polled to read incoming descriptors
and process messages. MPC implements two CQ: one for send, another for receive.
Both of them are shared among tasks meaning that all notifications are received and
multiplexed into the same CQ.

As depicted on Fig. 4, each MPI task implements one private pending list for
point-to-point messages. An additional global pending list is dedicated to collective
operations and may be concurrently accessed by several tasks. To ensure the message
progression, the MPC scheduler calls the polling function every time a context switch
occurs. The polling function is divided into three successive operations. First the task
tries to access the CQ and returns if another task is already polling the same CQ. We
limit to one the number of tasks authorized to simultaneously poll the NIC because
we observed a performance-loss with a concurrent access to the same CQ. Then, each
completed Work Request (WR) found from the CQ is disseminated and enqueued to
the corresponding pending list. At this time, the message is not processed. Secondly,
the global and the private pending lists are both polled. If messages reside in the lists,
they are processed until an expected MPI message is found. Thirdly, with collaborative
polling, if a task does not find any message to match, it tries to steal a WR from a task
located on the same NUMA node before lastly trying another NUMA node.

123

Improving MPI communication overlap with collaborative polling 269

Fig. 4 Collaborative-polling implementation inside MPC Infiniband Module

4.1 Extension to process-based MPI

Collaborative polling requires the underlying MPI runtime to share some internal
structures among tasks located on the same node. Within a regular process-based MPI
runtime, collaborative polling could be implemented by mapping the same shared-
memory segment in each process. The first cumbersome job here is to extract the
polling-related structures from the existing runtime and place them into the shared
memory.

The second difficulty is to by-pass the OS security which prevents several processes
to share the same network endpoint. For Infiniband, the Protection Domain (PD) pro-
vides an increased level of protection against inadvertent and unauthorized accesses:
a process cannot affect a QP in a different Protection Domain. As far as we know, two
processes cannot share the same PD and the compliance C10-7 from the Infiniband
Architecture Specification [22] requires that each QP in an HCA shall be associated
with a unique Protection Domain. To address this issue, we propose an implementa-
tion guideline where the runtime spawns and pins for each process as many POSIX
threads as physical cores on the compute node. When an MPI task is idle, it can wake
and schedule a thread from another process running the same core than it. The newly
scheduled thread then may call the progression function and handle incoming mes-
sages. This approach however requires O(p) threads to be scheduled on each core
where p is the number of processors on the compute node. An alternative approach
would be to use the Linux XPMEM Kernel module that enables a process to expose its
virtual address space to other MPI processes [23]. Since installing an external kernel
module on an HPC center is discouraged for security reasons, we did not focus on this
solution.

123

270 S. Didelot et al.

4.2 Extension to other high-speed interconnects

For the following paper, we designed collaborative polling for Infiniband networks.
However, this approach would be implemented for any interconnect, in condition that
the HCA does not support a fully independent message progression. In the case of
MPI over Infiniband, computation parts such as message matching cannot be offloaded
to the HCA and require the involvement of the host CPU to complete the reception.
In addition, collaborative polling does not require the underlying network to support
communication offload but should be more efficient on such networks.

5 Experiments

This section presents the impact of collaborative polling on three MPI applications:
EulerMHD [24], the NAS Parallel Benchmark suite [25], and Gadget-2 [26] from the
PRACE benchmarks. These codes run on the Curie supercomputer owned by GENCI
and operated into the TGCC by CEA. This is a QDR Infiniband cluster with up to 360
nodes equipped with 4 Intel Nehalem EX X7560 processors clocked at 2.266 GHz,
128 GB of main memory, for a total of 32 cores per node. We compare our approach
(MPC CP) against the regular version of MPC (MPC), MVAPICH2 1.7 (MV2), Open
MPI 1.6.1 (OMPI) and Intel MPI 4.0.3.088 (IMPI) which is based on the MPICH
runtime. Both, the application and the runtimes have been compiled using GNU GCC
4.4.0 and same compilation flags, except for the MPI runtime from Intel. The results
are an average of three runs and the same nodes have been used for comparing the
different runtimes.

5.1 NAS parallel benchmarks

The NAS parallel benchmarks (NPBs) are a collection of MPI applications that are
distilled from real computational fluid dynamics applications. We omitted the EP
benchmark from our study as it is exchanging a negligible number of MPI messages.

Figure 5 illustrates the results obtained running the NAS SP, MG, BT, FT, CG and
IS with class D on 1,024 cores on several MPI implementations. It decomposes the
time spent inside the MPI runtime from the computational time. For SP, MG and BT,
collaborative polling significantly reduces the time in MPI communications. Apart
from Intel MPI on MG where MPI_Wait and MPI_Barrier functions slow down
the execution time, collaborative polling provides performance close to the related
work. It respectively gives a speedup of 1.34, 1.25 and 1.69 on the communication
time for SP, MG and BT. Figure 6 depicts how much time is spent for an MPI task
to retrieve its own messages as well as to steal and process messages from another
task. For these three benchmarks, we observe a large amount of time stolen by MPI
tasks. It causes a significant reduction of the time spent for a task to receive its own
messages. We also notice a slight overhead in the message processing. Since we do not
have sufficient permissions on the cluster to access the hardware counters, we can only
assume that this effect is due to NUMA effects. Indeed, the copy of network buffers
to end-user buffers is more costly when it is processed by an MPI task located on a

123

Improving MPI communication overlap with collaborative polling 271

Fig. 5 NPB MPI evaluation. Class D on 1,024 cores

Fig. 6 NPB steal statistics. Class D on 1,024 cores

different NUMA node than the node where the end-user buffer is posted. However, this
overhead does not negatively affect the total execution time as the message processing
occurs during idle time.

On NAS CG, MPC with collaborative polling behaves like the regular version of
MPC. Some messages are stolen but the stolen time does not accelerate the execution of

123

272 S. Didelot et al.

Table 1 BT MPI time
showdown (class D)

Function MPC MPC CP Speedup

Execution time 97.69 77.09 1.27

MPI time 46.70 27.58 1.69

Compute time 50.99 49.51 1.03

MPI_Wait 30.58 12.73 2.40

MPI_Waitall 12.59 12.47 1.01

MPI_Isend 1.22 1.33 0.92

MPI_Irecv 1.83 0.67 2.75

the application, probably because the workload is well balanced across the tasks. The
same benchmark shows an overhead for Open MPI and MVAPICH2 due to a slowdown
in the MPI_Send function. On the other hand, NAS FT and IS exhibit an overhead
using collaborative polling. These benchmarks mostly communicate using collective
operations like MPI_AlltoAll, MPI_AlltoAllv and MPI_Allreduce. The
MPC implementation of collective operations uses point-to-point messages and tree-
like communications. Collective communication patterns consist of multiple commu-
nication stages (a.k.a rounds): let assume a communication round k, each MPI task
waits a message from the taks involved in round k − 1 after sending a message to the
tasks of round k + 1. When a task steals a message from a collective operation, it does
not emit the messages corresponding to the next round of the stolen task. In this case,
collaborative polling cannot benefit from idle time to recover the time lost while steal-
ing messages. A look at Open MPI and MVAPICH2 shows that, in this configuration,
they are both penalized on CG because of an high amount of time spent in MPI_Send.
Furthermore, Open MPI gets an high overhead in MPI_AlltoAllv on IS.

5.1.1 Block tridiagonal solver (NAS-BT)

In this section, we focus on the Block Tridiagonal Solver (BT). This benchmark solves
three sets of uncoupled systems of equations. It uses a balanced three-dimensional
domain partition in MPI and performs coarse-grained communications.

Table 1 exposes the details of the time spent in the MPI runtime. The gain in
MPI time comes from the time spent inside the wait functions (MPI_Wait and
MPI_Waitall) because the messages have already been processed by another task
when reaching such function. Indeed, Fig. 7 shows the amount of messages stolen per
task (locally on the same NUMA node or remotely on another NUMA node located
on the same computational node). It clearly shows that the number of stolen messages
is high, leading to the acceleration of the wait functions.

5.2 EulerMHD

EulerMHD is an MPI application solving both the Euler and the ideal magnetohydro-
dynamics (MHD) equations at high order on a two dimensional Cartesian mesh. At

123

Improving MPI communication overlap with collaborative polling 273

Fig. 7 Steal statistics (BT)

Fig. 8 EulerMHD evaluation

Table 2 EulerMHD MPI time
showdown

Function MPC MPC CP Speedup

Execution time 195.43 174.80 1.12

MPI time 32.50 13.87 2.34

Compute time 162.92 160.93 1.01

MPI_Wait 26.27 10.36 2.53

MPI_Allreduce 4.17 2.63 1.58

MPI_Irecv 1.24 0.18 6.84

MPI_Isend 0.83 0.69 1.19

each iteration, the ghost cells are manually packed into contiguous buffers and sent to
neighbors through non-blocking calls with no-overlap capabilities. Furthermore, each
timestep, a set of global reductions on one float number each is performed.

In these experiments, we use a mesh of size 4,096 × 4,096 for a total of 1,024 MPI
tasks and 193 timesteps. As depicted in Fig. 8, the collaborative polling decreases
the time spent in MPI functions by a factor of 2. Details of time decomposition is
illustrated in Table 2. The first time-consuming MPI call, the MPI_Wait function,

123

274 S. Didelot et al.

Fig. 9 The Rendezvous protocol with collaborative polling (left) and without (right). With collaborative
polling, an idle MPI task may steal a rendezvous control message, match and send the ACK to the sender

shows a significant speedup by more than 2.5. Surprisingly, the MPI_Allreduce
function highlights a speedup of 1.58 in this application. It can be easily explained:
with collaborative polling, faster MPI tasks already inside MPI_Allreduce may
help the progression of tasks that did not yet reach this function. Thus, collaborative
polling aims to diminish the imbalance across MPI tasks and so the time in global
synchronization points such as MPI_Allreduce.

The computation loop is also impacted and exhibits a minor improvement. With
collaborative polling enabled, the polling function is less aggressive while waiting
messages. This aims to reduce the overall memory traffic.

5.2.1 The Rendezvous protocol

MPC implements the Rendezvous protocol which requires a two-sided synchroniza-
tion between the sender and the receiver. It combines a lazy deregistration and a
registration cache to re-use existing registered addresses and reduce the impact of
memory registration [27]. In addition, no intermediate copy is allocated, meaning that
the receiver waits the receive buffer to be posted before sending the ACK message and
proceeding to a RDMA write operation.

Figure 9, left part, depicts the reception of a Rendezvous message without collab-
orative polling. While computing, the receiver cannot handle the REQ message. As a
result, the matching and the reply only occur inside the wait function. With collab-
orative polling (right part), an idle MPI task may steal the REQ message and reply the
ACK to the sender. The message transfer can even begin whereas the receiver is still
computing.

We run EulerMHD with the same dataset as previous but we disable the Buffered
protocol and force MPC to switch to Rendezvous protocol. In this configuration, 97 %

123

Improving MPI communication overlap with collaborative polling 275

Fig. 10 EulerMHD evaluation

Table 3 EulerMHD rendezvous
timers

Function MPC MPC CP

Time to reply 27.68 9.98

Matching 13.56 5.50

Request reception 6.27 0.08

of MPI messages are exchanged using Rendezvous. Figure 10 decomposes the time
spent inside the MPI runtime from the computational time and it clearly shows that
collaborative polling reduces the time to communicate. For a depth investigation, the
Rendezvous interface of MPC has been instrumented with three timers:

1. Time to reply time between the REQ and the ACK messages at the sender side.
2. Request reception time to handle the message while it as already been polled from

the CQ at the receiver side.
3. Matching time to match the message at the receiver side. This timer also includes

the time spent while waiting for the matching function to execute.

Table 3 reports the results of these timers on EulerMHD with and without collabo-
rative polling. At the sender side, the time to reply expresses a speedup of 2,77 using
collaborative polling. At the receiver side, because an idle task may handle the REQ
message from a computing task immediately after it has been polled from the CQ,
the request reception time is significantly faster with collaborative polling. Since col-
laborative polling allows multiple tasks to handle messages for the same remote task,
several Rendezvous messages can be matched in parallel, reducing the time required
for matching messages.

5.3 Gadget-2

Gadget-2 is an MPI application for cosmological N-body smoothed particle hydrody-
namic simulations. At each timestep, the domain is decomposed and the work-load

123

276 S. Didelot et al.

Fig. 11 Gadget evaluation

Table 4 Gadget MPI time
showdown

Function MPC MPC CP Speedup

Execution time 68.18 65.73 1.04

MPI time 29.78 27.46 1.08

Compute time 38.40 38.27 1.00

MPI_Allgatherv 9.51 8.86 1.07

MPI_Allgather 9.34 8.41 1.11

MPI_Sendrecv 3.75 3.47 1.08

MPI_Barrier 3.06 3.04 1.01

MPI_Allreduce 2.03 2.12 0.95

MPI_Recv 0.91 0.69 1.31

MPI_Reduce 0.76 0.52 1.47

MPI_Bcast 0.19 0.15 1.29

MPI_Ssend 0.14 0.14 0.99

is balanced across MPI tasks using a combination of Allgather, Allgatherv and
Ssend/Recv functions. During the force computation, each task exchanges the number
of outgoing particles with a call to MPI_Allgather before sending a point-to-point
message to each neighbor containing the new positions of the moving particles. From
a task to another, the construction of the local tree differs causing an imbalanced
work-load and a variation in the number of neighors. The configuration simulates 1e7

particles for 16 timesteps on 256 cores.
Collaborative polling exhibits an improvement in message-waiting time (see

Fig. 11). Open MPI gets an abnormal slow-down of approximatively 10 on the
MPI_Allreduce function compared to the other runtimes. Table 4 details the time
acceleration of MPI functions: collaborative polling allows speed-up on MPI_Recv
and MPI_Sendrecv functions leading to a 8 % improvement for the MPI time
compared to regular MPC run.

123

Improving MPI communication overlap with collaborative polling 277

6 Conclusion and Future Work

In this paper, we proposed a transparent runtime optimization called Collaborative
Polling. This solution does not require to modify the source code of the application
nor the programming model. The experiments on scientific codes show a signifi-
cant improvement of the MPI time with collaborative polling. Regular blocking/non-
blocking point-to-point communications can benefit from this optimization. Collabo-
rative polling may also reduce the imbalance across MPI tasks, diminishing the idle
time spent inside global collective operations like barrier, alltoall and allreduce. Addi-
tionally to this paper, collaborative polling was designed for MPI and Infiniband but
may be extended to any programming model and any interconnect which does not
implement a full independent message progression.

In the worst case of a perfectly well-balanced application, collaborative polling
fails to progress message asynchronously. We plan to investigate a mixed-solution
with an interrupt-based polling in a future work. We also intend to focus on hybrid
MPI/OpenMP codes where idle OpenMP tasks (i.e: tasks blocked in a barrier) would
participate to collaborative polling and progress messages of any MPI task located on
the same compute node.

Acknowledgments This paper is a result of work performed in Exascale Computing Research Lab with
support provided by CEA, GENCI, INTEL, and UVSQ. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not necessarily reflect the views
of the CEA, GENCI, INTEL or UVSQ. We acknowledge that the results in this paper have been achieved
using the PRACE Research Infrastructure resource Curie based in France at Bruyères-le-Châtel.

References

1. Iii JBW, Bova SW (1999) Where’s the overlap? An analysis of popular MPI implementations. Technical
report (August 12 1999)

2. Brightwell R, Riesen R, Underwood KD (2005) Analyzing the impact of overlap, offload, and inde-
pendent progress for message passing interface applications. IJHPCA

3. Pérache M, Carribault P, Jourdren H (2009) MPC-MPI: an MPIimplementation reducing the overall
memory consumption. In: PVM/MPI

4. Bell C, Bonachea D, Nishtala R, Yelick KA (2006) Optimizing bandwidth limited problems using
one-sided communication and overlap. In: IPDPS

5. Subotic V, Sancho JC, Labarta J, Valero M (2011) The impact of application’s micro-imbalance on the
communication-computation overlap. In: Parallel, distributed and network-based processing (PDP)

6. Thakur R, Gropp W (2007) Test suite for evaluating performance of MPI implementations that support
MPI_THREAD_MULTIPLE. In: PVM/MPI. pp 46–55

7. Hager G, Jost G, Rabenseifner R (2009) Communication characteristics and hybrid MPI/OpenMP
parallel programming on clusters of multi-core SMP nodes. In: Proceedings of Cray User Group

8. Graham R, Poole S, Shamis P, Bloch G, Bloch N, Chapman H, Kagan M, Shahar A, Rabinovitz I,
Shainer G (2010) Connectx-2 infiniband management queues: first investigation of the new support
for network offloaded collective operations. In: International conference on cluster, cloud and grid
computing (CCGRID)

9. Kamal H, Wagner A (2012) Added concurrency to improve MPI performance on multicore. In: ICPP,
IEEE Computer Society, pp 229–238

10. Almási G, Bellofatto R, Brunheroto J, Caşcaval C, Castaños JG, Crumley P, Erway CC, Lieber D,
Martorell X, Moreira JE, Sahoo R, Sanomiya A, Ceze L, Strauss K (2003) An overview of the
bluegene/L system software organization. Parallel Process Lett

123

278 S. Didelot et al.

11. Amerson G, Apon a (2004) Implementation and design analysis of a network messaging module using
virtual interface architecture. In: International conference on cluster computing

12. Sur S, Jin Hw, Chai L, Panda DK (2006) RDMA read based Rendezvous protocol for MPI over
infiniBand: design alternatives and benefits. Alternatives

13. Kumar R, Mamidala AR, Koop MJ, Santhanaraman G, Panda DK (2008) Lock-free asynchronous
rendezvous design for MPI point-to-point communication. In: PVM/MPI

14. Hoefler T, Lumsdaine A (2008) Message progression in parallel computing to thread or not to thread?.
In: International conference on cluster computing

15. Didelot S, Carribault P, Pérache M, Jalby W (2012) Improving MPI communication overlap with
collaborative polling. In: EuroMPI

16. Trahay F, Denis A (2009) A scalable and generic task scheduling system for communication libraries.
In: International conference on cluster computing

17. Huang C, Lawlor O, Kalé LV (2004) Adaptive MPI. In: LCPC
18. Rico-Gallego JA, Martín JCD (2011) Performance evaluation of thread-based MPI in shared memory.

In: EuroMPI
19. Demaine E (1997) A threads-only MPI implementation for the development of parallel programming.

In: Proceedings of the 11th international symposium on high performance computing systems
20. Tang H, Yang T (2001) Optimizing threaded MPI execution on SMP clusters. In: International Con-

ference on Supercomputing (ICS)
21. Carribault P, Pérache M, Jourdren H (2011) Thread-local storage extension to support thread-based

MPI/openMP applications. In: Chapman BM, Gropp WD, Kumaran K, Müller MS (eds) IWOMP.
Lecturen notes in computer science. Springer, Berlin, pp 80–93

22. InfiniBand Trade Association: InfiniBand architecture specification
23. Brightwell R, Pedretti K (2011) An intra-node implementation of openshmem using virtual address

space mapping. In: Fifth partitioned global address space conference
24. Wolff M, Jaouen S, Jourdren H, Sonnendrcker E (2012) High-orderdimensionally split lagrange-remap

schemes for idealmagnetohydrodynamics. Discrete and Continuous Dynamical Systems -Series S
25. Bailey D, Harris T, Saphir W, van der Wijngaart R, Woo A,Yarrow M (1995) The NAS Parallel

Benchmarks 2.0
26. Springel V (2005) The cosmological simulation code gadget-2. Monthly Notices of the Royal Astro-

nomical Society 364
27. Tezuka H, O’Carroll F, Hori A, Ishikawa Y (1998) Pin-down cache: A virtual memory management

technique for zero-copy communication. In: IPPS/SPDP, pp 308–314

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.

	c.607_2013_Article_327.pdf
	Improving MPI communication overlap with collaborative polling
	Abstract
	1 Introduction
	2 Related work
	2.1 Message progression strategies
	2.2 Thread-Based MPI

	3 Our contribution: collaborative polling
	4 Implementation
	4.1 Extension to process-based MPI
	4.2 Extension to other high-speed interconnects

	5 Experiments
	5.1 NAS parallel benchmarks
	5.1.1 Block tridiagonal solver (NAS-BT)

	5.2 EulerMHD
	5.2.1 The Rendezvous protocol

	5.3 Gadget-2

	6 Conclusion and Future Work
	Acknowledgments
	References

