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Abstract. With the rise of parallel applications complexity, the needs
in term of computational power are continually growing. Recent trends in
High-Performance Computing (HPC) have shown that improvements in
single-core performance will not be sufficient to face the challenges of an
Exascale machine: we expect an enormous growth of the number of cores
as well as a multiplication of the data volume exchanged across compute
nodes. To scale applications up to Exascale, the communication layer
has to minimize the time while waiting for network messages. This pa-
per presents a message progression based on Collaborative Polling which
allows an efficient auto-adaptive overlapping of communication phases
by performing computing. This approach is new as it increases the ap-
plication overlap potential without introducing overheads of a threaded
message progression.
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1 Introduction

The scalability of a parallel application is mainly driven by the amount of time
wasted in the communication library. One solution to decrease the communication
cost is to hide communication latencies by performing computation during com-
munications. From the application developer’s point of view, parallel program-
ming models offer the ability to express this mechanism through non-blocking
communication primitives. One of the most popular communication libraries, Mes-
sage Passing Interface (MPI), allows the programmer to use non-blocking send
and receive primitives (i.e., MPI Isend and MPI Irecv) to enable overlapping of
communication with computation. For example, Figure 1-a exposes one MPI task
performing a non-blocking communication without overlapping capabilities. In
such a situation, the message is actually received from the network during the
MPI Wait call. On the other hand, the same example with overlapping shows a
significant improvement reducing the overall time consumed (see Fig. 1-b).

Achieving overlap usually requires a lot of code restructuring and transforma-
tions. Users are often disappointed after spending a lot of time to enforce over-
lap because the runtime does not provide an efficient support for asynchronous
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-a- No Overlapping -b- Overlapping

Fig. 1. Influence of Communication/Computation Overlapping in MPI

progress [1,2]. The MPI standard does not define a clear implementation rule for
asynchronous communications but only gives recommendations. Most of the cur-
rent MPI libraries does not support true asynchronous progression and performs
message progression within MPI calls (i.e., inside MPI Wait or MPI Test func-
tions). The main difficulty with these implementations occurs when an MPI task
performs a time consuming function with no call to MPI routines for progressing
messages (i.e., calls to BLAS).

In this paper, we propose a collaborative polling approach for improving the
communication overlap without disturbing compute phases. This runtime opti-
mization has been implemented inside a thread-based MPI runtime called MPC
(Multi-Processor Computing [3]). Collaborative polling allows message progres-
sion when a task is blocked waiting for a message, enabling overlapping with any
other task within the same compute node. This method expresses a significant
message-waiting reduction on scientific codes. In this paper, we focus on the MPI
standard and Infiniband network but the collaborative polling could be adapted
to any network interconnect and could be extended to other distributed-memory
programming models.

2 Related Work

2.1 Message Progression Strategies

Researches provide significant speedups using overlap of communication on large
scale scientific applications [4, 5]. For common MPI runtimes, message progres-
sion is accomplished when the main thread calls a function from the MPI library.
To achieve overlap at user level, MPI applications may be instrumented with
repeated calls to the MPI Test function to test all outstanding requests for com-
pletion. This solution is not convenient for the developer and irrelevant for not
MPI-aware functions. For implementations supporting the MPI THREAD MULTIPLE
level of thread safety, Thakur et al. [6] present an alternative overlapping tech-
nique. Hager et al. [7] investigate a Hybrid MPI/OpenMP implementation with
explicit overlap optimizations. However, both techniques rely on source-code
modifications and involve multiple programming models.

Recent Host Channel Adapters (HCAs) provide hardware support for total
or partial independent progress but rely on specific network hardware capabili-
ties [8]. To enable software overlapping without user source code modifications,
MPI libraries investigate a threaded messages progression. Additional threads
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(also known as progression threads) are created to retrieve and complete out-
standing messages even if large computation loops prevent the main thread to
call the runtime library. For accessing the network hardware, progression threads
may be set to use the polling or the interrupted-driven methods.

The polling access approach increases performance on a spare-core thread sub-
scription where the progression thread is bound on a dedicated core. It was for
example adopted by IBM in the Bluegene systems [9]. Because only a part of the
cores participates to computation, the spare-core mode is barely used on regular
HPC clusters. MPI is often used in a fully subscribed mode sharing the progres-
sion thread and the user thread on the same core. However the decision when and
how often the polling function should be called is non-trivial. Too many calls may
cause overhead and not enough calls may waste the overlap potential.

The interrupted-driven message detection is different from the polling ap-
proach since it allows the sender or the receiver to have an immediate notification
of completed messages [10]. If no work has to be done, the progression thread
enters into the wait queue and goes to sleep. When a specific event is generated
from the network card (i.e., an incoming message), an interruption is emitted
and the progression thread goes back to the run queue. Because generating an
interruption for each message may be costly, MPI runtimes often implement a
selective interrupt-based solution [11, 12]. Only messages which are critical for
overlapping performance may generate an interruption.

For the fairness of the CPU resource sharing, each process has a maximum
time to run on a CPU: the time-slice. For example on a Linux kernel, it varies
from 1 to 10 milliseconds. Once the time-slice is elapsed, the scheduler interrupts
the current running thread, places it at the end of the run queue for its static
priority and schedules a new runnable thread. When an interruption occurs, the
progression thread has to be immediately scheduled, raising two main concerns.
First, it is unclear how much time is required to switch from the active thread
to the progression thread: the scheduler may wait for the running thread to
finish its time-slice and it is uncertain that the progression thread is the next
to be scheduled. Second, one time-slice may be insufficient to receive the en-
tire message. One solution to increase the reactivity would be to use real-time
threads. However, this might increase the context switching overheads since the
progression thread is scheduled every time an interrupt occurs [13].

The approach most closely related to ours is described in the I/O Manager
PIOMan [14] where the preemptive scheduler is able to run tasks in order to make
the communication library progress. This previous work is able to efficiently
overlap messages in a multi-threaded context but does not allow a MPI rank to
steal tasks from another MPI rank.

2.2 Thread-Based MPI

In a thread-based MPI library, each MPI rank is a thread. All threads (MPI
ranks) share the same memory address space within a unique UNIX process on
a compute node. AMPI [15], AzequiaMPI [16], MPC [3], TOMPI [17], TMPI [18],
USFMPI are some thread-based MPI implementations.
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Because of the implicit shared-memory context among tasks, thread-based
runtimes are well suited for implementing global policies, such as message pro-
gression, within a compute node. We implemented our contribution in the MPC
framework, an hybrid parallelism framework exposing a thread-based MPI 1.3
runtime. According to our needs, MPC brings two main features:

– Customizable two-level thread scheduler (help for tuning the message pro-
gression strategies).

– Support for a high-speed and scalable network (access to the Infiniband
network using the OFA IBverbs library with an OS-bypass technology).

3 Our Contribution: Collaborative Polling

During the execution of a parallel MPI application, the time spent while waiting
for messages or collective communications is wasted. This idle time is often
responsible for the poor scalability of the application on a large number of cores.
Even on a well balanced application at user level, some imbalance between tasks
may appear from several factors such as:

– The distance between communicating MPI peers.
– The number of neighbors.
– Micro-imbalance of communication (network links contentions, topology).
– Micro-imbalance of computation (non-deterministic events such as preemp-

tion) [5].

The main idea of the collaborative polling is to take advantage of idle cycles
due to imbalance for progressing messages at the compute node level. During its
unused waiting cycles, an MPI task is able to collaborate on the message progres-
sion of any other MPI task located on the same compute node. Fig. 2 compares
the processing of messages arriving from a Network Interface Controller (NIC)
with a regular message progression and with the collaborative polling method.

The algorithm depicted in Fig. 2 at application level is the following: each
MPI task executes a non MPI-aware function (Compute) with an unbalanced
workload between tasks before waiting for a message and calling a synchroniza-
tion barrier. On the left part, a regular message progression is presented. On
the right part, the collaborative polling method is used. Collaborative polling
allows task 1 to benefit from the unused cycles while waiting its message: it
can poll, receive and match messages for task 0 which is blocked into a non-
interruptible computation loop. Once the computation loop is done on task 0,
the expected message has already been retrieved by task 1 and the MPI Wait
primitive immediately returns.

As described in section 2.1 most message progression methods require to sus-
pend the computing phase (with an interruption, an explicit call to MPI or a
context switch to the progression thread) to perform progression. Collaborative
polling does not require these interruptions as it only uses idle time to per-
form progression. Thus, the impact of collaborative polling on compute time
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Fig. 2. MPI runtime without collaborative polling (left) and MPI with collaborative
polling (right)

is reduced compared to other methods. Collaborative polling also provides an
auto-adaptive polling frequency. Indeed, the frequency of calls to polling method
is directly linked to the amount of tasks waiting for a communication. For ex-
ample, when the number of tasks waiting on a barrier increases, the frequency
of calls to the message progression method increases as well.

4 Implementation

We designed and implemented our collaborative polling approach into MPC.
Since the Infiniband implementation of MPC uses the Reliable Connection (RC)
service, the message order is guaranteed and messages are reliably delivered
to the receiver. Three message transfer protocols are available: eager, buffered
eager (split a message into several eager messages) and Rendezvous based on
RDMA write. To guarantee the order across these three protocols, the high level
reordering interface of MPC is in charge of sorting incoming messages.

Modern interconnects such as Infiniband usually exploit Event Queues. When
a message is completed by the NIC, a new completion descriptor is posted to
the corresponding completion queue (CQ). Then, the CQ is polled to read in-
coming descriptors and process messages. MPC implements two CQ: one for
send, another for receive. Both of them are shared among tasks meaning that
all notifications are received and multiplexed into the same CQ.

As depicted on Fig. 3, each MPI task implements two pending lists: one private
for point-to-point messages and one global for collective operations. To ensure
the message progression, the MPC scheduler calls the polling function every time
a context switch occurs. The polling function is divided into three successive
operations. First the task tries to access the CQ and returns if another task is
already polling the same CQ. We limit to one the number of tasks authorized
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Fig. 3. Collaborative-Polling Implementation inside MPC Infiniband Module

to simultaneously poll the NIC because we observed a performance-loss with a
concurrent access to the same CQ. Then, each completed Work Request (WR)
found from the CQ is disseminated and enqueued to the corresponding pending
list. At this time, the message is not processed. Secondly, the global and the
private pending lists are both polled. Thirdly, with collaborative polling, if a
task does not find any message to process, it tries to steal a WR for a task
located on the same NUMA node before lastly trying another NUMA node.

4.1 Extension to Process-Based MPI

Collaborative polling requires the underlying MPI runtime to share some internal
structures among tasks located on the same node. Within a regular process-based
MPI runtime, collaborative polling could be implemented by mapping the same
shared-memory segment in each process. The cumbersome job here is to extract
the polling-related structures from the existing runtime and place them into
the shared memory. Another approach would to use the Linux XPMEM Linux
kernel that enables a process to expose its virutal address space to other MPI
processes [19].

5 Experiments

This section presents the impact of collaborative polling on three MPI appli-
cations: EulerMHD [20], BT from the NAS Parallel Benchmark suite [21], and
Gadget-2 [22] from the PRACE benchmarks. These codes run on the Curie su-
percomputer owned by GENCI and operated into the TGCC by CEA. This is a
QDR Infiniband cluster with up to 360 nodes equipped with 4 Intel Nehalem EX
processors for a total of 32 cores per node. We compare our approach (MPC w/
CP) against the regular version of MPC (MPC w/o CP), MVAPICH 1.7, Open
MPI 1.5.4 and Intel MPI 4.0.3.088.
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5.1 Block Tridiagonal Solver (NAS-BT)

The Block Tridiagonal Solver solves three sets of uncoupled systems of equations.
It uses a balanced three-dimension domain partition in MPI and performs coarse-
grained communications.

Fig. 4. BT Evaluation (class D)

Function w/o CP w/ CP Speedup

Execution time 83.73 66.19 1.26
Compute time 42.59 41.19 1.03

MPI time 41.14 25 1.65
MPI Waitall 8.06 6.6 1.22

MPI Reduce 1.29 · 10−3 1.28 · 10−2 0.1

MPI Allreduce 2.39 · 10−2 6.59 · 10−2 0.36
MPI Wait 30.11 15.97 1.89
MPI Isend 2.65 2.01 1.32
MPI Irecv 0.29 0.33 0.88

MPI Barrier 4.37 · 10−3 1.53 · 10−2 0.29

MPI Bcast 1.12 · 10−2 3.5 · 10−3 3.2

Fig. 5. BT MPI Time Showdown (class D)

Figure 4 illustrates the results obtained running the BT benchmark with class
D on 1024 cores on several MPI implementations. It decomposes the time spent
inside the MPI runtime from the computational time. Collaborative polling al-
lows a significant speed-up compared to regular MPC implementation. In com-
parison to other MPI implementations, we can however notice an overhead in
MPC with collaborative polling. This is because the Message Passing layer of
MPC is not well-optimized for the message sizes used by the NAS-BT benchmark
in this configuration. We are currently investigating this issue.

Figure 5 exposes the details of the time spent in the MPI runtime. The gain
comes from the time spent inside the wait functions (MPI Wait and MPI Waitall)
because the messages have already been processed by another task when reaching
such function. Indeed, Fig. 6 shows the amount of messages stolen per task
(locally on the same NUMA node or remotely on another NUMA node located
on the same computational node). It clearly states that the number of stolen
messages is high, leading to the acceleration of the wait functions.

Fig. 6. Steal statistics (BT)
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5.2 EulerMHD

EulerMHD is an MPI application solving both the Euler and the ideal magneto-
hydrodynamics (MHD) equations at high order on a two dimensional Cartesian
mesh. At each iteration, the ghost cells are packed into contiguous buffers and
sent to neighbors through non-blocking calls with no-overlap capabilities. Fur-
thermore, each timestep, a set of global reductions on one float number each is
performed.

Fig. 7. EulerMHD Evaluation

Function w/o CP w/ CP Speedup

Execution time 159.41 143.74 1.11
Compute time 133.66 131.8 1.01

MPI time 25.76 11.94 2.16
MPI Allreduce 3.12 2.75 1.13

MPI Wait 21.86 8.45 2.59
MPI Isend 0.57 0.49 1.16
MPI Irecv 0.21 0.24 0.87

Fig. 8. EulerMHD MPI Time Showdown

In these experiments, we use a mesh of size 4096 × 4096 for a total of 1024
MPI tasks and 193 timesteps. As depicted in Fig. 7, the collaborative polling
decreases the time spent in MPI functions by a factor of 2. Details of time de-
composition is illustrated in Table 8. The first time-consuming MPI call, the
MPI Wait function, shows a significant speedup by more than 2.5. The compu-
tation loop is also impacted and exhibits a minor improvement. This may be
due to the polling function which is less aggressive while waiting messages with
collaborative polling enabled, diminishing the memory traffic.

5.3 Gadget-2

Gadget-2 is an MPI application for cosmological N-body smoothed particle hy-
drodynamic simulations. At each timestep, the domain is decomposed and the
work-load is balanced across MPI tasks using a combination of Allgather, All-
gatherv and Ssend/Recv functions. During the force computation, each task
exchanges the number of outgoing particles with a call to MPI Allgather before
sending a point-to-point message to each neighbor containing the new positions
of the moving particles. From a task to another, the construction of the local
tree differs causing an imbalanced work-load and a variation in the number of
neighors. The configuration simulates 1e7 particles for 16 timesteps on 256 cores.

Collaborative polling exhibits an improvement in message-waiting time (see
Fig. 9). Table 10 details the time acceleration of MPI functions: collaborative
polling allows speed-up on MPI Recv and MPI Sendrecv functions leading to a
7% improvement for the MPI time compared to regular MPC run.
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Fig. 9. Gadget Evaluation

Function w/o CP w/ CP Speedup

Execution time 109.87 106.8 1.03
Compute time 61.18 61.09 1

MPI time 48.69 45.7 1.07
MPI Reduce 1.03 0.83 1.25

MPI Allreduce 3.81 4.24 0.9
MPI Recv 2.62 1.31 2

MPI Barrier 6.55 6.56 1
MPI Bcast 0.32 0.25 1.26

MPI Allgather 9.07 9.22 0.98
MPI Sendrecv 6.25 5.06 1.24

MPI Gather 4.62 · 10−3 3.8 · 10−3 1.21
MPI Ssend 0.18 0.18 0.99

MPI Allgatherv 18.85 18.05 1.04

Fig. 10. Gadget MPI Time Showdown

6 Conclusion and Future Work

In this paper, we proposed a transparent runtime optimization called Collabora-
tive Polling. This solution does not require to modify the source code of the appli-
cation nor the programming model. The experiments on scientific codes show a
significant improvement of the MPI time with collaborative polling. Many kinds
of MPI calls can benefit from this optimization: blocking/non-blocking point-to-
point as well as global collectives such as barrier and allreduce. Additionally to
this paper, collaborative polling was designed for MPI and Infiniband but may
be extended to any programming model and any interconnect which does not
implement a full independent message progression.

In the worst case of a perfectly well-balanced application, collaborative polling
fails to progress message asynchronously. We plan to investigate a mixed-solution
with an interrupt-based polling in a future work. We also plan to focus on hy-
drid MPI/OpenMP code where idle OpenMP would participate to collaborative
polling and progress messages of any MPI task located on the same compute node.
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