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Abstract. Current generation of high performance computing platforms
tends to hold a large number of cores. Therefore applications have to ex-
pose a fine-grain parallelism to be more efficient. Since version 3.0, the
OpenMP standard proposes a way to express such parallelism through
tasks. Because the task scheduling strategy is implementation defined,
each runtime can have a different behavior and efficiency. Notwithstand-
ing, the hierarchical characteristic of current parallel computing sys-
tems is rarely considered. This might come down to a loss of perfor-
mance on large multicore NUMA systems. This paper studies multiple
task scheduling algorithms with a configurable scheduler. It relies on
a topology-aware tree-based representation of the computing platform
to orchestrate the execution and the load-balacing of OpenMP tasks.
High-end users can select the task list granularity according to the tree
structure and choose the most convenient work-stealing strategy. One
of these strategies takes into account data locality with the help of the
hierarchical view. It performs well with unbalanced codes, from BOTS
benchmarks, in comparison to Intel and GNU OpenMP runtimes on
16-core and 128-core systems.

1 Introduction

Conceiving parallel algorithms is getting more and more intricate in accordance
with the evolution of computer architectures. Multi-cores and many-cores sys-
tems are widespread in high performance computing landscape. The number of
computing units per node massively increase and the future processor design
announced by constructors, for example Intel Many Integrated Core Archi-
tecture [6], continues this upward trend. In order to help the parallel appli-
cations programmer in getting the best performance from the hardware, work
has been conducted to integrate inside programming models implementations
several mechanisms [1–3] that take into account the memory hierarchy of the
underlying node. The programming models themselves evolve to offer features
fitted with current processors structure. One could cite the adjonction of task
parallelism to the OpenMP de facto standard [4] (in the 3.0 version) that al-
low the programmer to express a fine-grained parallelism. Currently, most of
the current OpenMP implementations support task programming, like in GNU
OpenMP [5] or Intel OpenMP [7]. Thus, each of them work on a particular
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task management system which directly affect application performance, accord-
ing to the system architecture. Indeed, C. Terboven and al. [8] point out that
the topology needs to be taken into account, especially NUMA architectures. In
this article, we propose to draw a list of parameters that control task scheduling
and evaluate the different configurations with representative applications over a
highly hierarchical system. In this way, we characterize the models of task-based
applications and we map each category to the right OpenMP task scheduling
configuration. We implemented our work inside the MPC framework [9], which
now includes an OpenMP 3.0 implementation.

This paper is structured as follows. The next section presents some related
work on task scheduling. Section 3 introduces our customizable OpenMP task
runtime which relies on the control of the task list granularity according to the
hardware topology and on the selection of a work-stealing policy. Evaluation
results of the different combinations provided by our proposal are presented in
section 4. The last section sums up these results and deals with some future
work.

2 Related Work

In this section we address the description of several task scheduling engines with
an eye to draw up the list of mechanisms employed, particularly the type of task
list and their consideration about the system topology.

One of the most common impementation is the GNU OpenMP runtime
embedded with the GNU compiler collection since 4.2 version. For the task
scheduling, it uses a single list per team. Each access to the list implies to
acquire a mutex and whenever a thread seeks for tasks to run or needs to store
one (deferred task), this global list is accessed. When a large amount of threads
execute tasks, this list quickly becomes a memory bottleneck.

On the other side, the other major implementation, Intel OpenMP Run-
time Library, ties a task list to each OpenMP thread. Each time a thread creates
a task that will not be executed immediatly, that task is placed inside the thread
task deque (double-ended queue). A random stealing strategy between thread’s
deques is set up for load balancing purpose.

Open UH is a branch of the Open64 compiler suite providing OpenMP
tasking feature [10]. As in Intel runtime, it uses per-thread deques. Inspired
by the Cilk scheduler [11], the tasks are created in a breadth-first way and
executed in depth-first manner. It also uses a cut-off (on the number of total
tasks created and the depth in the task graph) to avoid task overload which
could happen with recursive algorithm like Fibonacci sequence computing.

One could cite another OpenMP task scheduling implementation [13], real-
ized upon the ROSE compiler infrastructure [12] and which uses Qthreads user-
level thread runtime library [14]. This one targets multi-core systems through a
hierachical scheduling strategy. They point out a strategy which regroup threads
in sheperds using one LIFO task queue per shepherd. A work stealing mecha-
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nism between shepherds maintain the work balancing. Our proposal is inspired
by this structuring however we decide not to fix the granularity of the threads
pools, so as to consider it as a parameter.

Based on the runtime system for data-flow parallel applications X-KAAPI [15],
LibKOMP [16] implements the OpenMP task model. As previous runtimes, load
balancing is realized with a work stealing technic, inspired by Cilk. They also
propose several extensions to the standard to deal with task data dependen-
cies now present in OpenMP 4.0. Nevertheless, in this article we do not deal
with this part of the standard which add some interesting constraints to task
scheduling.

One can also notice the OMPi [17] OpenMP 3.0 infrastructure for C lan-
guage, including a source-to-source compiler and a runtime library. In order to
implement a breadth-first algorithm, it uses a circular deque per thread to man-
age deferred tasks. Load balancing is managed with a lock-free work-stealing
algorithm where each thread thief traverses other thread queues.

The ForestGOMP software [2] also uses work stealing technics according
to the memory hierarchy. However this takes place when dealing with nested
parallelism and the stealing objects are threads and their data.

Beside OpenMP runtimes, we could talk about some other task schedulers
that employ several technics which could be applied to OpenMP task managing.
One in particular, StarPU [18] is well-known in HPC domain and is based on
data-flow dependencies to schedule tasks. A set of parameters is available to
define the kind of task list (FIFO, LIFO, deque) and its granularity (one per
thread or a single global one).

From this overview of task schedulers and their internal mechanisms, we
decide to build an environment in which we could play with different parameters
like the granularity of task lists and the work stealing policy.

3 Task Scheduling Control

OpenMP tasking support implies for a runtime developer to take some sig-
nificant decisions concerning the implementation, especially the type of datas-
tructure for task management (list, stack, deque, etc.) which bears directly on
application performance. Indeed, the task paradigm often leads OpenMP ap-
plications to generate a large amount of tasks. That means the runtime has to
minimize the overhead of the numerous operations linked to task managing: cre-
ation, browsing, sharing and/or stealing, etc. Additionally, the runtime has to
control the load balancing, through a work stealing mechanism in most cases.

Considering these issues, we propose a customizable OpenMP task schedul-
ing engine giving us the possibility to evaluate several configuration sets which
may be inspired by existing OpenMP task runtimes. This work has been realized
inside the MPC framework [9] that provides an unified parallel runtime which
conforms to the OpenMP 3.0 standard beside others. The compilation step,
which turns OpenMP directives into runtime calls, is performed by a patched
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version of the GNU C compiler. Actually, we could control at user level the
behavior of the scheduler by specifying the number of task list and choosing the
work stealing policy.

3.1 Task List Granularity

The omnipresence of multicore architecture in High Performance Computing
landscape constrained the parallel applications and runtime developers to take
care of the underlying hardware topology. This becomes a necessary step to reach
efficiency. Some work on OpenMP task scheduling [2, 13, 8] has shown that the
difficulty comes from mapping of task execution scheme with the memory hier-
archy of the system. The hwloc software package [19], used in several parallel
runtimes and MPI implementations, helps us to discover the entire topological
structure of the system from which we build the MPC OpenMP threads tree.
This topology tree is a restricted version of from the original one: it ignore the
levels that do not bring any structure information (one-to-one links). Thus we
hold all the groups of threads defined according to the memory hierarchy, as in
the ForestGOMP runtime system with its hierarchical scheduler. For exam-
ple, on a 16-core architecture (figure 1), there are eight levels but only three are
relevant in the hierarchy structure. The first one concerns the processing units,
the cores, the L1 and L2 cache memories. The second one regroups the L3 cache
and the NUMA node levels. The last one is the whole machine.
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Fig. 1. Architecture topology of an eight-core Intel Sandy Bridge EP dual processor
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With this representation, the user can decide at which level the task lists are
allocated and accessed by the OpenMP threads. This parameter allows him to
play with the impact of access contention to the list(s) and data locality, noticed
as a main challenge [8]. Thus we extend the shepherds concept of S.L. Olivier
and al. [13] to the whole hierarchical levels of a computing node.

3.2 Stealing Strategies

Since Cilk [11], the work stealing algorithm is the most studied one for dynamic
load balancing purpose. It provides pretty good performance on average and is
implemented inside a large majority of task schedulers. When it comes to star-
vation for a thread, it becomes a thief looking for work inside other threads task
pools. Most of the time the victim is randomly chosen, which is a pretty good
strategy: generally it avoids contention for multiple thieves at the same time
and is a quick decision algorithm which matters at such critical point. However,
this strategy does not take into account the memory position of the stolen data
according to the binding of the thief thread. On a SMT system or a small scale
system, that does not really matter. When executing this algorithm on a large
multiprocessor and multicore machine, the impact over the performance may
not be negligible anymore. So we designed several policies for the selection of
the victim, whose one considers the memory hierarchy.
There are two kinds of stealing strategies. The first one looks for a task to exe-
cute inside all available lists, which is a pretty agressive policy. The second one
tries to steal inside only one list among those available. After the task search,
the thread which initiates the stealing process performs a yield call.

For the Hierarchical strategy, the search starts from the closest list in the
hierarchical order determined with the physical architecture structure. For ex-
ample, in case of one task list per thread, a thread whose list is empty will start
to steal a task from the lists of threads running on the cores of the same proces-
sor, before looking further. The Random strategy looks for a randomly-chosen
victim and the Random Order generates a random-ordered sequence of all task
lists to look for. Regarding the Round Robin, it browses the lists for a task to
steal according to a static and global ordering. A thread which needs to steal
a task would look inside the first neighbor of its own list, then the second, and
so on. Finally, the Producer algorithm selects the list which contains the largest
number of tasks enqueued and the Producer Order strategy builds a sequence of
task lists according to this indicator.

One could notice that only the Random and the Producer policies are single
trial ones. Moreover if we consider that the second one (Producer) implies a
lookup inside an attribute (number of element) of each list, Random is the only
real single trial policy.
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4 Evaluation

This section reports the results of our experiments on the BOTS benchmarks
suite to evaluate our different strategies in comparison to two other OpenMP
implementations: the Intel OpenMP Runtime Library coming with version
13.1.3 of the Intel C compiler and the GNU OpenMP library with the version
4.7 of the GNU C compiler.

4.1 Experiments platforms

Our experiments were conducted on a 128-core node of the Curie supercom-
puter (GENCI) and composed of 16 eight-core Intel Nehalem-EX processors
at 2.27 GHz and associated to 512 GB of memory (32 GB per NUMA node).
This structure comes from the association of 4 motherboards inter-connected
through a Bull network. Each processor exposes three levels of cache memory:
32 KB of L1 and 256 KB of L2 cache owned by each core and 24 MB of L3
shared by eight cores.
For MPC, the hierarchical representation of the system, used for OpenMP
thread scheduling, is a four-level tree. The root (level 0) corresponds to the
whole computational node, the next level (1) to the motherboard, the next one
(level 2) to the socket and L3 cache memory and the leafs (level 3) represent the
cores with their L1 and L2 cache memories. That means the granularity of the
task lists could be defined among four values: a single one for whole system; 4
lists, one per each motherboard; 16, one per socket; and 128, one per core.

4.2 Results

The results we present in this section come from the execution of the Barcelona
OpenMP Tasks Suite (BOTS). These benchmarks, inspired from real-life appli-
cations, evaluate the performance of OpenMP tasks runtimes. Several versions
of each benchmark are available and described in [20]. The figure 4.2 presents
the main characteristics of those benchmarks we took interested in. Thus, some
kernels use a single thread to produce all the tasks (with a single construct)
whereas for others, all threads generate a certain amount of tasks. Moreover we
wanted to consider the number of tasks produced which directly impacts the
performance of the runtime system.

Application Creation pattern Task type Load-balancing #Tasks

Alignment Single & Multiple Final Regular ≈ 50K
FFT Multiple Nested Regular ≈ 10M
Fibonacci Multiple Nested Regular ≈ 860M
Sort Single Nested Irregular ≈ 2M
Sparse LU Single & Multiple Final Irregular ≈ 40K



7

One has to specify that the modified version of gcc used for mpc is 4.4
and the version used for comparisons is 4.7. This explains the execution time
differences between gcc and mpc for sequential runs. The next figures show
the differences for two of the BOTS applications. The mpc version is around
30-35 % less effective than gcc .

GOMP MPC
Tserial 210.56 286.44
T1 (for) 203.14 264.87
T1 (single) 204.34 265.09

Fig. 2. Alignment results for serial exe-
cution

GOMP MPC
Tserial 4.05 5.51
T1 4.10 5.49

Fig. 3. Strassen results for serial execu-
tion

Globally, we observed that, for all benchmarks but the SparseLU in multiple
producer version, using one tasks list per thread provides the best performance.
Each thread own its list and generate a pool of tasks locally.

4.3 Alignment

Alignment is an application where the data locality really matters. Indeed, the
quantity of write operations to non-private memory is very low as presented
in [20]. The great majority of writes are to the private memory of the task.
Considering a 128-core node, task scheduling with a single global list, as for
gcc , is the worst solution whereas giving one list per thread, like icc , seems
to be more efficient. In figures 4 and 5, the different execution times presenting
the runs for mpc confirm this assessment.

Regarding the work-stealing mechanisms, all strategies deliver more or less
the same performance. Gaps between strategies execution time are just a bit less
perceptible with the single construct version.

Of interest, for both single and multiple producers versions, mpc performs
worse than icc and even than gcc with sequential and with 8, 16, 32, 64 threads.
When it reaches the number of 128 threads, mpc distinguishes itself and out-
performs gcc . For a well balanced code, like the multiple producer version,
icc still get better performance. However with the single construct, the bench-
mark is unbalanced and mpc outperforms icc . The best results comes from the
hierarchical stealing policy, always with a task list per thread.

4.4 FFT

The FFT benchmark computes the Fast Fourier Transform of a vector of n
complex values. icc gave the best results in this benchmarks even if the speedup
is’nt really significant. For its own part, gcc does not scale and performs really
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Intel GOMP MPC H. MPC R. MPC R.O. MPC R.R. MPC P. MPC P.O.
Tserial 284.78 301.03 306.15 306.15 306.15 306.15 306.15 306.15
T1list 973.54 1205.36 3113.86 1474.11 1249.48 1277.9
T4lists 27.41 1467.32 1127.05 912.43 569.06 n/a 1392.54 1216.01
T16lists 1219.73 n/a 1164.68 n/a 324.14 364.04
T128lists 204.06 1028.93 146.76 205.95 175.79 1186.2

Fig. 6. FFT execution time (in seconds) on a 128-core node
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worst than icc . Among several policies given by mpc , the ones using a single
list per core show the best performance. Moreover all others policies deliver a
consequent deterioration of the execution time.
Concerning the differences between work-stealing strategies, only hierarchical ,
random order , roundrobin , producer versions performs better than the sequen-
tial execution of the benchmark.
There are a really large number of tasks to manage for the runtime. In order to
limit the impact of the overhead for managing so many elements, LibGOMP use
a threshold on the number of tasks generated at one time. We also choose this
solution. However the parallelism of the application is limited by this threshold.
This explain the best performance come from the Intel runtime and the worst
ones from gcc and mpc .

4.5 Fibonacci

Intel GOMP MPC H. MPC R. MPC R.O. MPC R.R. MPC P. MPC P.O.
Tserial 71.12 115.23 118.34 118.34 118.34 118.34 118.34 118.34
T1list 186.1 101.43 13.41 8.67 134.57 129.83
T4lists 5.06 n/a 440.49 151.71 1544.99 7.94 149.52 14.01
T16lists 140.66 n/a 165.41 4.74 29.04 135.41
T128lists 107.99 2.68 118.76 2.75 3.46 732.26

Fig. 7. Fibonacci execution time (in seconds) on a 128-core node

This application benchmark generate a huge number of fine grained OpenMP
task to compute the nth Fibonacci number thanks to a recursive algorithm. For
our run we use the parameter n = 42.
Among all strategies, only the ones which do not require a long time process to
select a victim, like random , roundrobin and producer , deliver a good speedup,
even better than icc . Indeed, in this Fibonacci algorithm, the duration of ex-
ecuting a task code is so tiny that the steal decision step became more critical.
A way to counterbalance with these overheads is to steal more than only one
task and to determine the quantity of tasks to steal, like in libKOMP or in the
OpenMP runtime developed over the Rose compiler. As for gcc , there are so
many accesses to the global list during the whole run that it didn’t finished in a
reasonnable duration.

4.6 Sort

The Sort benchmark sorts a random permutation of n numbers with a fast
parallel sorting variation of the classical mergesort. As seen in the figure 8, the
best execution times for mpc correspond to the one list per thread strategy. The
one using the random work-stealing policy is the most performant.
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Intel GOMP MPC H. MPC R. MPC R.O. MPC R.R. MPC P. MPC P.O.
Tserial 4.4 4.28 4.97 4.97 4.97 4.97 4.97 4.97
T1list 3.76 4.93 3.16 3.75 5.19 3.87
T4lists 0.89 9.32 2.79 1.94 1.91 2.38 3.47 2.49
T16lists 1.79 n/a 8.65 2.08 1.42 1.91
T128lists 1.64 1.07 1.34 1.59 1.27 2.5

Fig. 8. Sort execution time (in seconds) on a 128-core node

Intel GOMP MPC H. MPC R.
Tserial 2993.16 1005.52 985.45 985.45
T1list 52.87 131.51
T4lists 32.78 130.94
T16lists 52.23 n/a
T128lists 33.0 49.72

Fig. 9. SparseLU for
execution time (in seconds) on a 128-core node

4.7 SparseLU

The Sparse LU application computes a LU matrix factorization over sparse
matrixes. We were interested into the multiple producers version. A group of
submatrices is assigned to each thread, some of them may not be allocated which
explains the unbalance of the algorithm. Due to a large percentage of writes to
shared data, the locality must be a priority for the task scheduler. Moreover,
unlike the previous algorithms that’s not nested data, thus there is less likely for
an OpenMP thread to get tasks that will work on the same data. On the figure
9 we could see that a hierarchical approach for task stealing gets better results
than the classical random one.

To sum up, we observed that, even if it delivers good performance in most
cases, the approach of random stealing with one tasklist per thread does not
suit to every cases. For some algorithms, the data locality must be taken into
consideration and a topology-aware task scheduler can benefit from the NUMA
characteristic of some actual systems.

5 Conclusion

Computing platforms design is getting embarassingly parallel for application
programmer. The latters need to split up their algorithm structure to offer suffi-
cient parallel work to the massive number of cores forming the current and future
architecture. The evolution of parallel programming models, like OpenMP with
the task support, allow them to express their problem in a finer-grained paral-
lelism. Nevertheless, the hierarchical structure of the underlying system is rarely
considered in the OpenMP task schedulers. On large NUMA node it can be
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really penalizing due to the overhead of distant memory accesses over local ones.
We proposed in this paper an evaluation of several task scheduling technics over
such computing system. We designed a configurable task scheduler which allows
us to control the granularity of task list, according to the hardware topology, and
to select a specific work-stealing strategy. Thus, we have compared many tech-
nics combinations through the execution of Barcelona OpenMP Task Suite. We
notice that the strategy adopted by LibGOMP cannot scale on a large NUMA
node and for several applications. Moreover we also noticed that a hierarchical
work stealing strategy can outperform the efficient Intel OpenMP Runtime
Library. We are actually working on the support of Intel C compiler in order
to benefits from its optimizations and compare only the performance of both
runtime.
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