
Adaptive OpenMP for Large NUMA Nodes

Aurèle Mahéo1, Souad Koliäı1, Patrick Carribault2,1, Marc Pérache2,1,
and William Jalby1

1 Exascale Computing Research Center, Versailles, France
2 CEA, DAM, DIF, F-91297, Arpajon, France

1 Introduction

The advent of multicore processors advocates for a hybrid programming model
like MPI+OpenMP. Therefore, OpenMP runtimes require solid performance
from a small number of threads (one MPI task per socket, OpenMP inside each
socket) to a large number of threads (one MPI task per node, OpenMP inside
each node). To tackle this issue, we propose a mechanism to improve performance
of thread synchronization with a large spectrum of threads. It relies on a hier-
archical tree traversed in a different manner according to the number of threads
inside the parallel region. Our approach exposes high performance for thread
activation (parallel construct) and thread synchronization (barrier construct).
Several papers study hierarchical structures to launch and synchronize OpenMP
threads [1, 2]. They tested tree-based approaches to distribute and synchronize
threads, but they do not explore mixed hierarchical solutions.

2 Adaptive OpenMP Runtime

Multiple tree shapes exist to perform thread synchronization. The most straight-
forward solution is a flat tree with one root and one thread per leaf. It allows fast
synchronization for a few number of threads: the master thread iterates through
leaves to flip one memory cell. But with an increasing number of threads, per-
formance drops. A tree mapping the topology of the underlying architecture
is more suitable. Such tree exposes more parallelism for synchronizing a large
number of threads, but invoking few threads requires a high overhead for tree
traversal.

Our approach is to bypass some parts of the tree when the number of threads
is small enough to impact only a sub-tree of the topology tree. Figure 1 depicts
this mechanism on a 32-core node (4 processors with 8 cores). Thus, when the
number of threads is lower than 8, the master thread starts at the second level
(leftmost child of the root). For a larger number of threads, the topology tree is
still fully used.

3 Experimental Results

We implemented our mechanism in MPC [3] inside the existing OpenMP run-
time. We conducted experiments on a Bull bullx 6010 server embedding a

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 254–257, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Adaptive OpenMP for Large NUMA Nodes 255

Fig. 1. Tree Structures for 32-Core Node

-a- Tree Evaluation

-b- Runtime Evaluation

Fig. 2. Parallel Overhead Evaluation on 128 Cores

memory controller for cache coherency called Bull Coherency Switch (BCS).
This ccNUMA system allows configuration with up to 16 processors sockets (4
modules containing 4 processor sockets and a BCS) sharing a single coherent
memory space. Thus these 16 processor sockets provide 128 CPU cores.



256 A. Mahéo et al.

-a- Tree Evaluation

-b- Runtime Evaluation

Fig. 3. Barrier Overhead Evaluation on 128 Cores

Figures 2 and 3 present the results of EPCC benchmarks [4] up to 128 threads.
Figure 2-a depicts the overhead of entering and exiting a parallel region for differ-
ent trees: 2-level tree (MPC 4-32), topology tree (MPC 4-4-8) and our approach
(MPC MIXED). We benefit from both trees by using this bypass mechanism: the
overhead is equal to the minimum of trees. Furthermore, Figure 2-b illustrates
that our approach achieves better performance than state-of-the art implemen-
tations. Figure 3-a and 3-b illustrate the same experiments for the OpenMP
barrier construct.

4 Conclusion and Future Work

We introduced a new mechanism to increase the performance of OpenMP thread
activation and synchronization for a wide spectrum of threads. It shows signifi-
cant performance improvement on a 128-core node on EPCC microbenchmarks.
For future work, we have to investigate more this strategy by extracting a generic
algorithm to bypass trees in a flexible way. Finally, it would be interesting to
integrate OpenMP tasks and check the influence of task scheduling.



Adaptive OpenMP for Large NUMA Nodes 257

References

1. Nanjegowda, R., Hernandez, O., Chapman, B., Jin, H.H.: Scalability Evaluation of
Barrier Algorithms for OpenMP. In: Müller, M.S., de Supinski, B.R., Chapman,
B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 42–52. Springer, Heidelberg (2009)

2. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.A., Namyst, R.: ForestGOMP:
an efficient OpenMP environment for NUMA architectures. International Journal
on Parallel Programming 38(5), 418–439 (2010)

3. Carribault, P., Pérache, M., Jourdren, H.: Enabling Low-Overhead Hybrid
MPI/OpenMP Parallelism with MPC. In: Sato, M., Hanawa, T., Müller, M.S.,
Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 1–14.
Springer, Heidelberg (2010)

4. Bull, J.M., O’Neill, D.: A Microbenchmark Suite for OpenMP 2.0. SIGARCH Com-
put. Archit. News 29(5), 41–48 (2001)


	Adaptive OpenMP for Large NUMA Nodes
	Introduction
	Adaptive OpenMP Runtime
	Experimental Results
	Conclusion and Future Work
	References




